廢舊電池回收處理工藝主要分為三個處理過程:預處理、二次處理與深度處理。廢舊電池回收過程中仍有部分電量,所以要對其進行預處理,主要進行深度放電過程、破碎、物理分選。二次處理的目的是為了使正負極活性材料與基底發(fā)生分離,主要用熱處理法、有機溶劑溶解法、堿液溶解法以及電解法等來實現。深度處理是處理過程的關鍵,主要包括浸出和分離提純兩個過程,對有價值的金屬材料進行提取?,F如今鋰電池回收工業(yè)中常用的技術有干法回收和濕法回收等,其中濕法工藝是目前回收廢舊鋰電池較為成熟的技術,也是目前研究較多的一種工藝。
生物吸附是指用生物質對金屬離子進行被動吸附或者配合的技術 。也就是指利用具體特性的生物質 (活的 、死的或者衍生物)的配體和金屬離子之間發(fā)生離子交換 、配合、協(xié)同和鰲合等作用。
生物吸附劑多數來源于 、、藻類和自然物的廢棄物。生物吸附過程受許多因素影響 , 如生物吸附劑類型、被吸附的金屬離子類型、pH值 、溫度、競爭離子及固液比等, 其中影響的是 pH值、反應溫度和競爭離子的數量和類型。
1、溶液 pH值 :吸附溶液 pH值被認為是影響吸附過程中重要的因素 。 pH值會影響吸附劑結合位點的暴露程度。大量實驗研究得出 pH值對鋰電池的影響與重金屬不同, 大部分重金屬的吸附 pH值比較高 (3.0 ~ 7.0), 如鉛和銅吸附 pH均為 5.0,鎘、鋅和鎳 pH均為 5.5。而鋰電池吸附 pH一般較低 (1.0 ~ 3.0),如鉑 pH為 1.6, 鈀pH為 1.8。
2、反應溫度 :反應溫度通常影響溶液中鋰電池離子的穩(wěn)定性, 離子與吸附劑配合和細胞壁化學成分離子化的穩(wěn)定性。
3、 競爭離子 :生物吸附方法回收鋰電池應用于工業(yè)上復雜的一個問題就是其它競爭離子的存在。其他競爭離子可能會與主要金屬離子競爭吸附位點, 或者降低吸附劑的特性。
鋰電池的自放電率一般為每月 0.5%~5%。
不同類型的鋰電池自放電率會有所差異,例如磷酸鐵鋰電池(LFP)自放電率較低,而鈷酸鋰電池(LCO)自放電率相對較高。此外,鋰電池的自放電率還受溫度、荷電狀態(tài)(SOC)等因素影響,溫度越高、SOC 越高,自放電率通常越大。
回收的意義:隨著全球新能源汽車市場的崛起,動力電池裝機量迅速攀升,首批投入市場的動力電池即將迎來 “退役潮”,電池回收市場蘊藏著巨大機遇。鋰電池回收一方面可以彌補關鍵原材料的潛在供應缺口,另一方面還能減少對環(huán)境的負面影響。
