離子交換反應是離子交換劑與電解質(zhì)溶液的化學位差而引起的離子交換過程。在離子交換劑相中反離子A的濃度高,當離子交換劑與電解質(zhì)溶液接觸時,反離子就竭力向其濃度低的溶液中擴散。離子交換劑電中性破壞,離子交換劑就得到附加電荷。
銠催化劑的回收
離子交換技術在銠催化劑回收方面主要用于將Rh從Pt、Pd、h以及其他堿金屬中分離。具有雙電荷的配陰離子PdCl42-、PtCI62-、PtCl42-和IrCl62-則能被陰離子交換樹脂所吸附。而IrCl63-和RhCl63-與陰樹脂的結合能力較弱。Rh-Cl配陰離子通過NaOH沉淀,在稀酸中再溶解可以定量的被水解成六水合配陽離[Rh(OH2)6]3+,顯然Rh配陽離子完全不被陰樹脂吸附。因此,利用所帶電荷符號的差異,成功地應用離子交換法分離和精制銠。
貴金屬催化劑(precious metal catalyst)一種能改變化學反應速度而本身又不參與反應終產(chǎn)物的貴金屬材料。幾乎所有的貴金屬都可用作催化劑,但常用的是鉑、鈀、銠、銀、釕等,其中尤以鉑、銠應用廣。它們的d電子軌道都未填滿,表面易吸附反應物,且強度適中,利于形成中間“活性化合物”,具有較高的催化活性,同時還具有耐高溫、抗氧化、耐腐蝕等綜合優(yōu)良特性,成為重要的催化劑材料。
按催化反應類別,貴金屬催化劑可分為均相催化用和多相催化用兩大類。均相催化用催化劑通常為可溶性化合物(鹽或絡合物),如氯化鈀、氯化銠、醋酸鈀、羰基銠、三苯膦羰基銠等。多相催化用催化劑為不溶性固體物,其主要形態(tài)為金屬絲網(wǎng)態(tài)和多孔無機載體負載金屬態(tài)。金屬絲網(wǎng)催化劑(如鉑網(wǎng)、銀網(wǎng))的應用范圍及用量有限。